

2009 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	70+	28.0%
В	57+	23.2%
С	44+	24.6%
D	37+	10.7%
No award	<37	13.6%

Section:	Multiple Choi	ce	Extended Ar	nswer
Average Mark:	24.8	/40	32.4	/60

	2009 Higher Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning				
1	D	73	⊠A non-metal oxides e.g. carbon dioxide dissolve in water to form acids (pH<7) ⊠B copper (II) oxide is insoluble in water (p7 of data booklet) ⊠C non-metal oxides e.g. sulphur dioxide dissolve in water to form acids (pH<7) ☑D metal oxides e.g. sodium oxide dissolve in water to form alkalis (pH>7)				
2	С	48	■ A iodide ions are negative: $2I^- \rightarrow I_2 + 2e^-$ ■ B Nickel ions are oxidised as they lose electrons: $Ni^{2+} \rightarrow Ni^{3+} + e^-$ ■ C Cobalt ions are reduced as they gain an electron: $Co^{3+} + 2e^- \rightarrow Co^{2+}$ ■ D Sulphate ions are negative: $SO_4^{2-} + 2H^+ + 2e^- \rightarrow SO_3^{2-} + H_2O$				
3	С	84	 A molecular covalent: low boiling point and no conduction as solid B metallic: conducts as a solid C covalent network: very high melting point and no conduction as a solid D molecular covalent: low boiling point and no conduction as solid 				
4	A	52	$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$ $1mol$ $CuCO_3 + H_2SO_4 \rightarrow CuCl_2 + H_2O + CO_2$ $1mol$ $1mol$ $1mol$ $1mol$ $1mol$ $2mol$ $1mol$ $1mol$ $1mol$ M $1mol$ $1mol$ $1mol$ M $1mol$ $1mol$ $1mol$ M M $1mol$ $1mol$ M M $1mol$ $1mol$ M M $1mol$ $1mol$ M				
5	D	66	From Graph: when concentration = 0.50mol l ⁻¹ then the rate = 0.2s ⁻¹ time = $\frac{1}{rate}$ = $\frac{1}{0.2}$ = 5s				
6	A	58	gfm Mg = 24.3g no. of mol Mg = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{10}{24.3}$ = 0.412mol no. of mol CuSO ₄ = volume × concentration = 1litres × 1mol t ⁻¹ = 1mol Mg + CuSO ₄ → MgSO ₄ + Cu 1mol 1mol 0.412mol 0.412mol (reacted) ∴ All 0.412 mol of Magnesium has reacted (limiting reactant) 0.588mol of CuSO ₄ unreacted (CuSO ₄ is in excess)				
7	В	79	Forward Reaction: Activation energy E_a is measured from R to top of hill Enthalpy Change ΔH is measured from R to P For Forward Catalysed Reaction: $\Delta H = 50 - 100 = -50$ kJ mol ⁻¹				
8	D	63	 For Forward Catalysed Reaction. <u>AH - 50 - 10050kJ mol</u> A Ethanol has a high boiling points due to hydrogen bonding but this has no effect B C₂H₅OH and CH₃OCH₃ are isomers and have same mass due to same formula C C₂H₅OH and CH₃OCH₃ are isomers and burn to form same products D C₂H₅OH and CH₃OCH₃ have different bonds within their molecules so release different amounts of energy during combustion when new bonds are formed. 				
9	A	77	 ✓A Electroneg: Cs=0.8 and F=4.0 ∴ diff = 4.0-0.8= 3.2 ∴ greatest ionic character ☑B Electroneg: Cs=0.8 and I=2.6 ∴ diff = 2.6-0.8= 2.8 ☑C Electroneg: Na=0.9 and F=4.0 ∴ diff = 4.0-0.9= 3.1 ☑D Electroneg: Na=0.9 and I=2.6 ∴ diff = 2.6-0.9= 2.7 ∴ least ionic character 				
10	В	50	Group 1 ElementLithiumSodiumPotassiumRubidiumCaesiumFranciumMelting point (°C)18198633928Less than 28°C1st Ionisation Energy (kJ mol^1)520496419403376Less than 382				

			X 1st Tonication	removes 1 mole of	alaat	nong from 1 m	ol of f no.		stome (not ione)	
	-									
11	11 C		E B 1 st Ionisation removes 1 mole of electrons from 1 mol of free gaseous atoms (not ions) $\mathbf{\Box}C$ 1 st Ionisation involves removing 1 mol of e ⁻ from 1 mol of gaseous atoms							
	Ŭ			-			-		1	
				removes an electro						
			• •	nds needs a N or		•		•	•	
12	C	58		be polar as electi	-					
		50	•	valent bond as sai		-	•			
				ls' forces are bet					molecule	
				itains N-H bond s		•	-	-		
13		75		tains O-H bond s		•	5	5		
15	U	15		tains N-H bond s		, ,	5	5		
			☑D molecule cor	tains no N-H, O-	H or	H-F bonds s	o no Hyd	rogen boi	nding present	
14	Α	73	Bonding Type	Covalent		Hydro	gen		dispersion forces me: van der Waals')	
74	A	13	Bond Strength	Strong		Medi	um		Weak	
			🗷 A Ionic lattice	needs metal and	non-	metal atoms	joined t	o be ionic	(fullerene in C60)	
4 -		10		a C60 is has no me			•		(
15	D	60		t of fullerene not				lent netw	ork	
				a molecular form	-	-				
				3 is a trigonal pyr			olecule w	hich is po	olar	
	~	1		is a angular shape		•				
16	\mathcal{L}	64		achloride CCl4 is			•	oolar due	to shape	
				uoride HF is a line					· · · · · · · · · · · · · · · · · · ·	
				ormula units = 2 m					unit)	
47		F 0		ecules = 2mol of 1		•	•		•	
17	D	52		ns = 2 mol of elec		•			-,	
	-			$ecules = 6.02 \times 10^{2}$, arony		
				28g∴ n o. of mol =			0.25mo			
				∴ n o. of mol = ^m			.5mol			
18	C			g ∴ n o. of mol = ^m						
10				g ∴ n o. of mol = ^m						
				g ∴ n o. of mol = ^m						
								10	~	
			$H_2 + \frac{1}{2}$	$H_2O_2 \rightarrow H_2O_2$	J	C	$O + \frac{1}{2}$	${}_{2}^{2}O_{2} -$	→ CO2	
10		20	1mol C).5mol 1mol		1r	nol O	.5mol	1mol	
19	В	В	39	1vol C).5vol 1vol		1\	vol C	.5vol	1vol
			3 litres 1 .	5 litres 3 litr	es	1 li	tres 0.	5 litres	1 litres	
			Total o	xygen require	d = 3	1.5 litres	+ 0.5 li	tres = 2	2 litres	
				t) is formed in car						
20		1		xide is formed in	-	•	•			
20	D	64		s are released by		-	•			
			'	xide is formed by		5	•			
			Answer	A		B		С	D	
21	Δ	16	Formula	C2HCl3		C2H4Cl	2	C ₃ H ₆	C ₃ H ₇ OH	
L 1	7		Possible	Only		1,1-dichloroet	thane	Propene	Propan-1-ol	
			structures	, 1,1,2-trichloroeth	ene	1,2-dichloroe		•		
			Answer	A		В		<u> </u>	D	
22	^	72	Name	propanal	met	hyl ethanoate	prop	anone	ethanoic acid	
66	²² C 73	Homologous Series	aldehyde		ester		one	carboxylic acid		
			Old Name	alkanal		-	alka	none	alkanoic Acid	

23	В	79	$H H H H H$ $H H H$ $H - C - C - OH \longrightarrow C = C + H_2O$ $H H H H$ $H H H$
24	A	83	✓A Steam reforming produces synthesis gas: $CH_4 + H_2O \rightarrow CO + 3H_2$ ⊠B Cracking splits larger molecules into smaller molecules: $C_{12}H_{26} \rightarrow C_8H_{18} + C_4H_8$ ≅C Hydration adds water across a C=C double bond: $C_2H_4 + H_2O \rightarrow C_2H_5OH$ ≅D Oxidation increases oxygen : hydrogen ratio(primary alcohol → aldehyde → carboxylic acid)
25	В	36	 A butan-1-ol oxidises to butanal which would react with Benedict's Solution B butan-2-ol oxidises to butanone which does not react with Benedict's solution C butanone is a ketone which does not oxidise D butanoic acid is a carboxylic acid which does not oxidise
26	В	56	Polymer is made from a 2-carbon monomer $\therefore 1^{st}$ monomer is ethene Polymer is also made from a 4 carbon monomer with C=C double bond between C ₁ and C ₂ $\therefore 2^{nd}$ monomer is but-1-ene
27	С	52	Structure of amine groups (-NH $_2$) are very similar to ammonia (NH $_3$)
28	A	56	 ☑ A Hardening of oils is the addition of H₂ molecules across C=C double bonds in oils ☑ B Hydrolysis: molecule splits into smaller molecules adding water across break ☑ C Dehydration: water is removed from a molecule leaving a C=C double bond ☑ D Oxidation: increasing the oxygen : hydrogen ratio in a molecule.
29	С	72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30	A	85	Enzymes are denatured at temperatures the optimum temperature (37°C). Rate of reactions peaks at optimum temp and falls on either side of the optimum temperature.
31	D	83	A feedstock is a chemical from which other chemical can be extracted. A raw material is a material which is obtained from the earth and used by industry
32	A	80	$\begin{array}{cccc} \bullet & H_2 + \frac{1}{2}O_2 \longrightarrow H_2O & \Delta H=b \\ \bullet & S + O_2 \longrightarrow SO_2 & \Delta H=c \\ \bullet & S+1 & H_2O + SO_2 \longrightarrow H_2S + 1\frac{1}{2}O_2 & \Delta H=-d \\ \bullet & \text{add} & S + H_2 \longrightarrow H_2S & \Delta H=b+c-d \end{array}$
33	D	88	 A catalysts increase the rate of both the forward and reverse reactions B catalysts increase the rate of both the forward and reverse reactions C catalysts do not change the final concentrations of the reactants and products D catalysts do not change the final concentrations of the reactants and products
34	В	39	Forward reaction rate is at its highest at start and reduces as reaction proceeds. Reverse reaction is at its slowest at start and increases as reaction proceeds. When at equilibrium, rate of forward reaction = rate of reverse reaction.

35	В	39		Hydrogen H ⁺ ions and sulphite SO ₃ ²⁻ ions join together to form molecules of sulphurous acid H ₂ SO ₃ . H ⁺ ions are removed from the solution but OH ⁻ ions remain and pH is alkaline		
36	D	50	⊠B sodium sulph ⊠C Potassium ch	≥A sodium ethanoate solution has alkaline pH>7 (weak acid in salt) ≥B sodium sulphate solution has neutral pH=7 (no weak acid or alkalis in salt) ≥C Potassium chloride solution has neutral pH=7 (no weak acid or alkalis in salt) ⊿D ammonium nitrate solution has acidic pH<7 (weak alkali in salt)		
37	D	53	•	$\begin{array}{cccc} & 2I^{-} \rightarrow I_{2} + 2e^{-} \\ & & $		
38	В	56	$Mg^{2+} + 2e^{-} \longrightarrow Mg$ $\stackrel{2mol}{2mol} 1mol$ $= 193000C$			
39	A	35	Radiation Type Deflection Size of deflection	Alpha Down to bottom Smaller bend as Alpha particles are heavier	Beta Up to top Greater bend as Beta particles are lighter	Gamma Straight through (No deflection)
40	С	49		$^{31}_{15}P$ + $^{1}_{0}$	$n_{\rm D}^{1} n \rightarrow n_{\rm 15}^{32} h$)

2	009 Highe	r Chemistry Marking Scheme	
Long Qu	Answer	Reasoning	
1a	Increases across period	ElementLiBeBCNOFElectronegativity1.01.52.02.53.03.54.0	
1b	Electron being removed is breaking a full outer shell	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
1c	Greater Van der Waals' attractions in bigger molecules like I2	Going down group 7 the atoms with the diatomic halogen molecules get larger. Larger atoms have stronger London dispersion forces so larger halogens are closer together which raises the boiling point.	
2a	x=7 y=8	Methyl benzene has the formula $C_6H_5CH_3$: formula = C_7H_8	
2b	No carbon dioxide produced or no greenhouse gases produced	Hydrogen burns to form water only: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ No carbon dioxide is produced which contributes to the Greenhouse Effect	
2c	Ethanol is a renewable fuel	Ethanol in petrol reduces amount of petrol being burnt. As ethanol is a renewable fuel, it can be replaced easily and the amount on non-renewable fuel being used up is reduced.	
3a(i)	H removed from reactant	Oxidation of alcohols Primary alcohols Aldehydes Carboxylic Acid Secondary alcohols Ketones X (No oxidation) Tertiary alcohols Y (No oxidation)	
3a(ii)	orange $ ightarrow$ green	Oxidising AgentStart ColourEnd ColourAcidified DichromateOrangeGreenBenedict's/Fehling'sBlueBrick Red (orange)Hot copper (II) oxideBlackBrownTollen's Reagent(Colourless)Silver mirror produced	
3b(i)		Esters will float on top of sodium hydrogencarbonate solution as they are insoluble in water and are less dense than water. Esters are insoluble in water because the hydrophilic (water-loving) parts of the alkanol and alkanoic acid are removed as they join together to form the ester.	
3b(ii)	Structure of propyl propanoate:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4a	Absorbs harmful u.v. light	Ozone layer in upper atmosphere absorbs harmful ultra-violet (u.v.) radiation from the sun. This u.v. light can cause skin cancer	
4b	Heterogeneous	Type of CatalystDefinitionHomogeneousCatalyst in same state as reactantsHeterogeneousCatalyst in different state from reactants	
4c	4.01x10 ²³ molecules	$3O_2 \longrightarrow 2O_3$ $3mol \qquad 2mol$ $1mol \qquad 0.67mol$ $1mol O_3 = 6.02 \times 10^{23} \text{molecules}$ $0.67mol O_3 = 6.02 \times 10^{23} \text{molecules} \times \frac{0.67}{1}$ $= 4.01 \times 10^{23} \text{molecules}$	

-		
5a(i)	Amino acids	Amino acids have the general structure: (where R is different in each amino acid) $H = H = H = 0$ $H = H = 0$ $H = H = 0$
5a(ii)	Molecule splits into two molecules with water added at the break	 Hydrolysis reactions are found in Breakdown of starch into glucose Breakdown of protein to amino acids Breakdown of fats/oils to glycerol and 3 fatty acids
5b(i)	Ester	Esters are formed by the condensation reaction between • a hydroxyl -OH group • a carboxyl -COOH group • C-O-C-
5b(ii)	Fibres are linear, resins have cross-links	Fibres are long chains of a polymer but have no strength as they are not cross-linked with other fibres. Cured resins have these cross-links between chains which gives cured resins strength.
6a(i)	Answers include:	Temperature of water at start Temperature of water at end
6a(ii)	-333.8 kJ mol ⁻¹	1mol CH ₃ OH = (1×12) + (4×1) + (1×16) = 12 + 4 + 16 = 32g 0.370g methanol ↔ 3.86kJ 32g methanol 3.86kJ × ³² / _{0.370} = -333.8 kJ mol ⁻¹
6b	Complete combustion of methanol	The oxygen atmosphere in the apparatus means that there is no loss of heat by incomplete combustion
7α	Collect gas over water in a water-filled measuring cylinder	Gases can be collected over water in a measuring cylinder to measure the volume of gas. Carbon Dioxide is slightly soluble in water so some is lost as it dissolves in water. Very soluble gases e.g. nitrogen dioxide cannot be collected this way
7b	Loss of mass of flask	The mass of the flask + contents will decrease as gas escapes from the flask. The quicker the mass of the flask decreases, the faster the reaction. Other acceptable answers: pH, concentration of acid and conductivity.
8a	Continuous	Chemicals needed in large quantities e.g. fertiliser have to be made by a continuous process as it is more efficient/profitable in a continuous process rather than a stop/start batch process.
8b(i)	Answer to include:	 Higher temperature gives lower yield of ammonia raising temperature means endothermic reaction will be favoured Less yield of ammonia means reverse reaction is favoured Equilibrium moves to the left ∴ reverse reaction is endothermic and forward reaction is exothermic
8b(ii)	Answer to include:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		$gfm N_2 = (2 \times 14) = 28g$ $gfm NH_3 = (1 \times 14) + (3 \times 1) = 14 + 3 = 17g$
		$N_2 + 3H_2 \longrightarrow 2NH_3$
		28g 34g
8c	67%	500g $34g \times \frac{500}{28}$
		= 607.1g
		500kg 607.1kg
		-
		%yield = $\frac{\text{actual}}{\text{theoretical}} \times 100 = \frac{405}{607.1} \times 100 = 66.7\%$
		Type of Alcohol Definition
9a	Answer to include:	Primary 1 carbon directly attached to the carbon with the -OH group Secondary 2 carbons directly attached to the carbon with the -OH group
		Tertiary 3 carbons directly attached to the carbon with the -OH group
9b	Addition	CH_3 -MgCl adds across the C=O double bond
0	Dantan 2	Final product 3-methylpentan-3-ol
9c	Pentan-3-one	3-methyl group is removed and -OH becomes C=O to form pentan-3-one
10a	Neutralisation	acid + carbonate> salt + water + carbon dioxide
10b	Diagram showing:	C - C - C - C
	e	
		$1 \mod C_4 \mathbb{H}_6 \mathbb{O}_6 = (4 \times 12) + (6 \times 1) + (6 \times 16) = 48 + 6 + 96 = 150g$
		no. of mol = Volume = 0.105 litres = 0.004375mol
		2NaHCO3 + C4H6O6 → Na2(C4H4O6) + 2H2O + 2CO2
10c	0.0164g	1mol 2mol
100	5	0.00219mol 0.00438mol
		m ass = n o. of mol × gfm = 0.00219mol × 150g mol ⁻¹ = 0.329g
		20 sweets = 0.329g ∴ 1 sweet = 0.0164g
1 1		Increasing the temperature results in more particles having energy greater than the
11a	Answer to include:	activation energy. The activation energy stays the same as temperature rises. More particles have energy greater than the activation energy so reaction rate increases.
		Potassium has electron arrangement: 2,8,8,1 Chlorine has electron arrangement: 2,8,7
11b	Answer to include:	Potassium has addition electron shell compared to chlorine. Potassium's additional shell is
		further from nucleus so atomic size increases. no. of mol H2SO4 = volume × concentration = 0.050 litres × 0.01mol l ⁻¹ = 0.0005mol
		$\frac{1}{100} = 0.000 \text{ more } 2000 \text{ more } 20000 \text{ more } 2000 \text{ more } 20000 \text{ more } 200000 \text{ more } 2000000 \text{ more } 200000000 \text{ more } 200000000000000000000000000000000000$
		$H_2SO_4 + Ba(OH)_2 \longrightarrow BaSO_4 + 2H_2O$
12a	0.0179 mol l ⁻¹	1mol 1mol
120		0.0005mol 0.0005mol
		concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.0005\text{mol}}{0.028 \text{ litres}} = 0.0179 \text{ mol } 1^{-1}$
		volume 0.028 litres
		$H_2SO_4(aq) + Ba(OH)_2(aq) \rightarrow BaSO_4(s) + 2H_2O(l)$
12b		The ions in the solid
	Answer to include:	reaction to move so do not does not contribute
		Conductivity decreases as ions contribute to to conductivity
		are removed conductivity
		At neutralisation point, there are no reactant ions left
		and the products have no free ions to conduct

	Add ammeter to	The current in the circuit needs to be measured to calculate $Q = I \times t$ and
13a	measure current	current is measured on an ammeter.
100	Add variable resistor	A variable resistor is added to control the current and keep it constant.
13b	0.107g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
14a	Lower Same	AcidTypeRate of ReactionConductivityVolume to neutralise alkaliHydrochloric acidStrongFasterHighSameEthanoic AcidWeakSlowerLowSame
14b(i)	10 ⁻¹³ mol l ⁻¹	pH = 1.0 ∴ [H ⁺] = 10 ⁻¹ = 0.1mol l ⁻¹ $[OH-] = \frac{10^{-14}}{[H+]} = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ mol } l^{-1}$
14b(ii)	Answer to include:	Increasing the number of chlorine atoms gives decrease in pH ∴ strength of acid is related to degree of dissociation/conc of H ⁺ ions ∴ increasing the number of chlorine atoms, the stronger the acid
	Al ₄ C ₃ + 12H ₂ O	
15a	\downarrow	$AI_4C_3 + 12H_2O \rightarrow 4AI(OH)_3 + 3CH_4$
	4AI(OH)3 + 3CH4	
15b	34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16a	Answer to include:	$^{227}_{90}$ Th $\rightarrow ^{223}_{88}$ Ra + $^{4}_{2}$ He
16b	Alpha particles are not very penetrating	Alpha particles are stopped by a piece of paper and are not very penetrating. It is unlikely that a significant amount of alpha particles would leave the body and affect others.
16c	0.48g	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
17a	neutron : proton 7 : 6 1.17 : 1	${}^{13}_{6}$ C No of protons = atomic number = 6 No. of neutrons = mass number - atomic number = 13-6 = 7
17b(i)	-СН2 -С=О ОН	Problem Solving Question:

17b(ii)	but-2-ene	 Mass = 54 ∴ hydrocarbon has 4 carbons (weighing 48) ∴ remaining mass = 8 ∴ 8 hydrogens in the hydrocarbon Formula = C₄H₈ could be butene or cyclobutane But hydrocarbon reacts with hydrogen so hydrocarbon must be butene. Hydrocarbon is but-2-ene as only 2 groups on NMR spectrum (-CH₃ and C=C)
18a	2S₂O₃²-→S₄O ₆ ²- + 2e ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18b	Starch	Starch indicator turns blue/black in the presence of iodine
18c	0.0126	$\begin{array}{cccccccccccccccccccccccccccccccccccc$